近日,浙江数字化发展与治理研究中心专职研究员、浙江大学管理学院教授陈熹作为通讯作者发表论文Developing a Composite Measure to Represent Information Flows in Networks: Evidence from a Stock Market于Information Systems Research杂志(SCI检索,2020-2021 影响因子 5.207,国际权威期刊)。
事物之间存在各种各样的联系。以这些联系为边,以事物为节点可以形成一张网络。政府、企业、个体都是这种网络中的节点,几乎没有什么事物可以存在于这张网络之外。这张网络是信息的载体,节点在网络中发散和接受各式各样的信息。通过信息的传递,而他们在生活生产中的每一项决策都在影响着其他节点,同时又受到来自于网络中其他节点的影响。通过观察事物间的联系构建网络,以网络化的视角来观察事物之间的信息流,可以帮助我们更好的理解和预测网络中的节点行为。
该论文就是以网络化的视角捕捉股票市场中的信息流并研究此类信息流的经济影响。文章采用设计科学方法,提出了一种新的复合度量,即特征注意力中心性 (EAC),作为与节点相关联的信息流的代理,该节点同时考虑对节点的注意力和与网络中其他节点的注意力。分析表明,EAC 在预测股票异常收益的方向和幅度方面明显优于其他指标。此外,EAC 规范比替代规范具有更好的预测性能,并且在预测异常收益方面优于直接注意力。最后,复合信息比单独的信息源具有显着更好的预测性能,这种卓越的性能归功于来自社交媒体而不是传统媒体的信息。
我们也可以用这样的视角来观察和研究其他的生产生活活动。比如,可以以政务服务为节点,政府服务是否存在共享用户为边,构建政府服务的信息网络,则有可能预测个体对政务服务的需求,实现政府服务的主动推送。
【作者简介】
陈熹,现系浙江数字化发展与治理研究中心专职研究员,浙江大学管理学院教授,浙江大学管理学院数据科学与管理工程学系系主任,浙江大学数据科学研究中心副主任,浙江大学求是青年学者,获得浙江省自然科学基金杰出青年基金、浙江省钱江人才(C类)资助。陈熹先后毕业于香港大学商学院(博士)、新加坡国立大学(硕士)、复旦大学(学士)。陈熹主持和参与国家及省部级以上科研项目多项,在国内外知名期刊和学术会议上发表论文数十篇,包括Information Systems Research, Decision Support Systems, European Journal of Operational Research, Information & Management等。担任SSCI检索的1区期刊Information & Management的副主编和Internet Research编委。陈熹的研究方向主要是关于社交媒体、社交网络分析、社交商务等。为淘宝、达摩院、联合利华等知名公司提供咨询服务,取得较好的成效。
【原文信息】
Abstract
There is increasing interest in information systems research to model information flows from different sources (e.g., social media, news) associated with a network of assets (e.g., stocks, products) and to study the economic impact of such information flows. This paper employs a design science approach and proposes a new composite metric, eigen attention centrality (EAC), as a proxy for information flows associated with a node that considers both attention to a node and coattention with other nodes in a network. We apply the EAC metric in the context of financial market where nodes are individual stocks and edges are based on coattention relationships among stocks. Composite information from different channels is used to measure attention and coattention. To evaluate the effectiveness of the EAC metric on predicting outcomes, we conduct an in-depth performance evaluation of the EAC metric by (1) using multiple linear and nonlinear prediction methods and (2) comparing EAC with a benchmark model without EAC and models with a set of alternative network metrics. Our analysis shows that EAC significantly outperforms other measures in predicting the direction and magnitude of abnormal returns of stocks. Besides, our EAC specification has better predictive performance than alternative specifications, and EAC outperforms direct attention in predicting abnormal returns. Using the EAC metric, we derive a stock portfolio and develop a trading strategy that provides significant and positive excess returns. Lastly, we find that composite information has significantly better predictive performance than separate information sources, and such superior performance owes to information from social media instead of traditional media.
Keywords
Eigen attention centrality, information flow, attention, coattention, network structure, network analysis, return prediction
【文章源链接】
Wuyue (Phoebe) Shangguan, Alvin Chung Man Leung, Ashish Agarwal, Prabhudev Konana, Xi Chen (2021) Developing a Composite Measure to Represent Information Flows in Networks: Evidence from a Stock Market. Information Systems Research 0(0).
https://doi.org/10.1287/isre.2021.1066
编辑:陈思夏
审核:许小东